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Abstract. A classical model of a gravitational field is constructed in terms of two distinct 
geometries. It is formulated in terms of a purely geometric action with distinct densities in 
different space-time domains. An explicit static spherically symmetric solution for each 
geometry is found and matching properties across a world tube generated by a closed 
space-like submanifold are discussed in terms of the associated second fundamental forms. 
The interior geometry has bounded curvature and torsion. The exterior region has a 
Schwarzschild geometry. The model simulates distinct phases of the gravitational field and 
is motivated by E Cartan’s analogy of torsion effects with dislocation phenomena in 
continuum mechanics. 

1. Introduction 

One of the most striking features of Einstein’s theory of gravity is its prediction of 
certain space-time domains that are unobservable to certain observers and the exis- 
tence of singularities (Penrose 1969, Hawking and Ellis 1973). These features are 
found to hold in a large class of field configurations that seem relevant in this cosmos. It 
is sometimes asserted that quantum gravity will modify these aspects of classical gravity 
and smooth out space-time singularities but there is no viable demonstration of this at 
present. It may be argued that by modifying the classical action for gravity it is possible 
to discover field configurations that are indistinguishable from the Schwarzschild 
geometry at large distances from a centre (or axis) of symmetry but nevertheless have a 
non-singular geometry. In many ways this is the only escape route from black-hole 
singularities with static spherical symmetry since by Birkhoff’s theorem there are no 
alternative vacuum Einstein spaces. 

A possible modification is to assume collapsing matter with enough intrinsic spin to 
activate a strong torsion phase for the geometry within the matter. It has been proposed 
that the presence of such a torsion can modify the nature of the geometry enough to 
arrest the formation of a black hole from an intrinsically spinning star (Trautman 1973). 
However, a curvature singularity may not always arise from collapsed matter (the 
Schwarzschild geometry is a static vacuum solution with a particular boundary condi- 
tion) in which case an alternative mechanism must be sought. One approach is to seek a 
.mechanism of torsion generation that does not depend explicitly on the equation of 
state of spinning matter. That is, we require an exact solution to a theory in which the 
connection describing the gravitational field generates torsion without the intervening 
effects of matter. 

f On leave from the Physics Department, Middle East Technical University Ankara, Turkey. 
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The modifications to Einstein’s theory which exist in the literature may be regarded 
as mathematical models whose properties might suggest viable tests in the real world. 
Many modifications are formulated in terms of a gauge group and a set of associated 
gauge fields (see also Moffat and Taylor 1980). 

In a series of articles (Benn et a1 1980a’ b, c) we have demonstrated that by 
regarding gravity in terms of an SL(2, C) gauge theory of space-time frames, a natural 
and simple extension of Einstein’s original theory is obtained. Within this formalism we 
ask whether it is possible to construct a matter-free action purely in terms of geometri- 
cal variables that possesses exact singularity-free solutions approaching the Schwarz- 
schild geometry in some coordinate system. 

Our search for an appropriate dynamics is motivated by Cartan’s (1922) analogy of 
torsion to continuum dislocations (e.g. Landau and Lifshitz 1970). If one imagines a 
dense lattice of affine frames over space-time then each lattice point requires for its 
specification six orientation coordinates and four origin coordinates with respect to the 
additional space-time event coordinates. The origin of each frame must be visualised in 
the tangent space of the space-time manifold. In a space without torsion the origin of all 
the affine frames are correlated rather like the bonds of a perfect atomic lattice. In a 
space with torsion the affine frame field is such that after returning from a smooth 
detour in the crystal one does not obtain a unique origin for the affine frame (just as the 
direction of a vector is not preserved after performing a circuit in a space with intrinsic 
curvature). This is reminiscent of the definition of the Burgers’ vector for dislocations in 
an atomic lattice. Although the analogy is far from perfect it is not the first time that 
geometrical descriptions of gravity have been compared with other systems in physics 
(Sakharov 1967). Now atomic lattice dislocations have their own dynamics and can 
sometimes coalesce to form dislocation boundaries. The dislocation density can be very 
different on either side of the boundary. If space-time torsion is to be considered in 
terms of dislocated affine frames then a natural approach might be to seek an action for 
some bounded space-like region that describes a torsion phase and a distinct action for 
an exterior torsion-free domain. We then restrict ourselves to spherically symmetric 
static field configurations and seek exact solutions that have a continuous metric across 
the boundary. 

2. The model 

In an earlier article (Benn et a1 1980a)’ whose notation and conventions we follow here, 
we have argued how a classical gravitational soliton in space-time might arise in a 
theory with the appropriate action. In that paper we relied on the existence of a 
‘gravitationally charged’ field to hold the soliton together. We remarked that it 
might be possible to view this field as a manifestation of the local contortion of 
space-time. 

We are guided in the following by some of the mechanisms discussed in that paper. 
However, we shall suppose that the geometry of space-time be partitioned into two 
distinct phases separated by a dynamical boundary. We may give the boundary an 
intrinsic formulation as the image of a 3-chain on space-time with a closed space-like 
2-surface. The dynamics of free relativistic membranes has been investigated else- 
where together with certain supersymmetric extensions (Collins and Tucker 1976, 
Howe and Tucker 1978). In the model to be constructed we completely neglect this 
aspect of the problem to the extent that we seek two static spherically symmetric 
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gravitational phases separated by a static spherically symmetric interface that partitions 
the world tube of a three-dimensional hypersurface from the rest of space-time. 

The interface will be expected to sustain a discontinuous SL(2, C )  curvature 
although we demand that the metric components be continuous across it in some basis. 
(It might in fact be found possible to arrange a C' metric across the interface thus 
ensuring smooth Christoff el geodesics linking the two geometries.) We shall seek an 
interior geometry with torsion but a torsion-free Einstein geometry on the exterior 
domain. Then the full SL(2, C )  curvature of the full SL(2, C )  connection will be 
discontinuous at the interface. This will set up stresses that must be sustained by our 
postulated boundary. We shall assume that the action of the 3-chain generates a 
dynamics that enables the two geometries to remain stable. (This is analogous to 
requiring the stresses generated by the electric field of a hollow electrically charged 
conducting sphere to remain in equilibrium with the elastic forces of the conductor.) 

We know that the only torsion-free Einstein space with static spherical symmetry 
has an exterior Schwarzschild metric and we adopt for the exterior geometry the 
Einstein-Hilbert action 

regarded as a functional of the anti-Hermitian coframe e and the SL(2, C )  connection 
1-form d which are defined below. denotes the corresponding SL(2, C) curvature. 
SIm stands for the scalar-imaginary part of the complex quaternion in the parentheses. 
G is Newton's gravitational constant. In view of the earlier comments on gravitational 
solitons we are motivated to adopt a different action YI1 involving both curvature and 
torsion for the interior domain MII. Non-Einsteinian actions have been much studied 
recently. In particular, in a number of distinct actions involving quadratic curvatures 
apparently similar geometries containing torsion in the absence of spinning matter have 
been found (Benn et a1 1980c, Baekler 1981). However, in the approach here, we are 
constrained by requiring a model to link an exact field configuration to that of the usual 
exterior Schwarschild geometry. 

To construct an appropriate action for this purpose we introduce the contortion 
1-form k, This is defined in terms of the full SL(2, C )  connection d by 

R = $ - f i  (2) 

where 
Hermitian coframe e by? 

is the torsion-free (Christoffel) connection defined in terms of the anti- 

de +2i$(ft ,  e) = 0. 

d + Qda + a d d  

(3) 
In order to maintain the transformation 

(4) 

under a change of gauge section generated by SL(2, C )  in terms of the complex unit 
norm quaternion Q, the contortion form has adjoint transformation properties 

I? + ago. ( 5 )  

t In terms of orthonormal basis 1-forms e", a = 0, 1 , 2 , 3 ,  the anti-Hermitian coframe is given by e = 
ieo+I;:=, ekek  where t?k are three algebraic quantities satisfying &ke*[ = -Ski + Zi, (k l j )  cyclic. c.4 denotes the 
anti-Hermitian, X the Hermitian part of any quaternionic form. 
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In terms of k the torsion 2-form T is given by 

Since the full curvature is defined as 

g = d & + d A &  

we can write this in terms of the Christoffel curvature 

R r = d f + f l \ f  
as 

R = R r + d k  + 2  v(f A k )  +k A k. 

(7) 

(9) 

The natural quadratic curvature 4-form is I? A *I? where * is the Hodge dual 
operator with respect to the space-time metric. In the absence of torsion, i.e. ( T  = O),  
this is simply R ~ A  *Rr. It should be observed at this point that in the presence of 
torsion, ReS{Rr A *Rr} generates an SL(2, C) gauge covariant theory distinct from that 
described by the action Re S{& A *I?}. This is because (3) and (6) can be explicitly 
solved for f and k in terms of the gauge covariant forms T and e 

f = :( Txix)S(de A 2 )  + 3V( i;( dd) 
k=- ' -  8( ix ix)S(T A d)- iV(TxF)  

where 
3 

k = l  
ix = iio+ 1 i k 6 k  and i,(eb) = S! a, b = 0, 1, 2, 3 

so that from (9), Re S{Rr A * f i r }  may be expressed solely in terms of & and e. These can 
be varied independently to generate SL(2, C) covariant equations. The component 
form of such an action is given in the Appendix. In terms of the contortion our model is 
described by the complete SL(2, C) invariant action? 

Y[e,&,.rr]=-GIm s ( & A e A d ) + a  Re s ( f f rA*Rr+orkA*&k)+ .rr 

(123 
I, I,, IC3 

where (Y is a real constant and the 3-chain C3 bounds MIr and .rr is an appropriate 3-form 
action for the dynamics of C3. We define D r k  = d k  + 2 V(f A k).  The field equations 
from independent variations of e and o in the region MI and MII are rather complex. In 
keeping with our intention to examine static solutions we shall ignore the contribution 
of .rr to these equations and simply replace its effects by the boundary conditions 
discussed above. 

3. Static solution 

The geometry of MI is determined by the Einstein-Cartan system of equations 

s; : D (e  A P) = 0 (13) 

Se : %(R A e )  = 0. (14) 

t The kinetic term for the contortion in the second integral is suggested by a formal analogy with the 
Yang-Mills-Higgs systems. 
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Equation (13) implies T=O in this region and we have an Einstein space with the 
unique spherically symmetric Schwarzschild solution for r 3 2m 

N d r  
e '=  i( 1 -$) * I 2  d t +  1 /2  + r d N  (1-2mIr) 

where in terms of R 3  chart coordinates (r,  8, q5),  N is the unit q vector 

N = cos 8 + sin 8 sin q5& + sin 8 cos 421. 
In this gauge the SL(2, C) curvature 2-form in region I is 

-1/2 +s( 1 - $) dr A N d N  -? d N  A d N  
2r 

and the gauge invariant quadratic curvature 4-form 

where *1 is the volume element on M I .  
Since 

S({Rr * i * D r k }  A * (2, * i * D r k } )  
Re k, 

S(Rr * 8, + D r k  * D r k )  f d(Re S(2igr  A k}) (19) 

we see that as far as the interior field equations in wgion MII are concerned they follow 
from the action 

= Re LI, [MII 

Yrr = (Y Re J S ( $  A *$) (20) 
MI1 

where p* = dr* i * DrR. The extra term can be transformed to a 3-form over C3. The 
interior field equations are 

Se : %'$ A ix *$ -*$ A ix$) = 0. (22) 

To solve the field equations in region MI,  we adopt solutions that arise from $ = 0 or 

i *RI' = VDrl? (23) 

in terms of a polarity parameter 77 = f 1 t. 

? It may be of some interest to note here that the integrability conditions 

D,.*I?,. = *OR A R -12 A *DR D ~ *  D,.R = o 
of equation (23) are structurally similar to the Yang-Mills-Higgs field equations. 
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The most general spherically symmetric static forms for e and 2 are (up to gauge 
equivalence) 

e = iho(r)+ h l ( r )N dr + h2(r) d N  (24) 

(25) & = ifo(r)N dt  +f l ( r )N dr +f2(r) d N  +f3(r)N d N  

where ho, hl  and h2 are real functions of r but thefi, i = 0, 1 ,2 ,3 ,  may be complex. The 
complex q-vector valued 2-form equation (23) now yields the following set of coupled 
differential equations: 

(2hohilh:)pi(l +pi)  = vfh 
Pof2 = 0 

fh =f1(2p1+ 1) 

where PO = -hh/2hl and PI = (h2,- h1)/2hl. The ’ denotes dldr. 
A particular solution to this set that satisfies the constraints we desire is 

h i  = A2/h: = blr + bo (33) 

h2 = ro (34) 
where a, bo, bl, A, ro are real constants and all other functions are zero. 

In order to fix these constants we match geometries as far as possible across the 
interface between MI and MII (Synge 1966, Israel 1965)t. It transpires that the most 
natural matching occurs on the submanifold r = 2m for all t in a chart that includes the 
image of C3. The constant a is fixed to be rplm/r: so that fo(2m) = 0. Since 

& I 1 =  i(bl/4A +fo(r))N d t - i N  d N  
then 

4 I1 w /dm = & I l r = Z m .  

Furthermore if we set bl = A/2m and bo = -A then 

We adjust the signature convention of the interior Lorentzian metric by setting A = - p 2  
(m > 0) so that the final choice of interior geometry is given in terms of the (t, r, 8,4) 
chart as: (r s 2m). 

e”=ip(1-r/2m)1’2dt-p( l -r /2m)-1’2N dr+2m d N  (38) 
d r O d r  

g”= -k2(1 -r/2m) d t O d t + p 2  (1 - r/2m) +4m2{sin2 8 d 4 O d 4  +deOdO} (39) 

(40) * 1 = 2m2k2 dr A dt  A N d N  A d N  

i We have learnt that the junction conditions with torsion are also discussed by Arkuszewski et al (1974). 
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TI1= (ir lp3/2m)(l  - r / 2 ~ z ) " ~  dr A dt 

R I 1  A * R I 1  = -1 

(43) 

(44) 

(45) 

T" A = 1 4m2(1 - r/2m) * 1 
-4 32m *l. 

It will be noticed that the gauge invariant 4-form T" A *TI;" vanishes on the interface 
r = 2m and the curvature invariant I?" A *gl' is non-singular. For comparison the 
external geometry is specified by (15), (16) and (17) together with 

+ r2{sin2 0 d#J O d 4  + d e  Ode}  g'= -(1-2m/r) dt O d t  + d r O d r  
(1 - 2m/r) 

(46) 
T1=O. 

Although the metrics and connections are continuous at the interface there is a 
curious frame reflection that occurs. The space or time frame parity conventions are 
opposite across the interface if a common coordinate chart is used to establish these 
conventions. 

Another curious feature of the solution under discussion is the double duality 
property: 

*RI= iff' in MI (47) 

* R 11 = -irlff 11 in MII. (48) 

Property (47) is to be expected since all Einstein spaces have double dual curvatures. 
Property (48) is surprising since the action for MII is non-Einsteinian. It implies that for 
a negative polarity torsion (7 = -1) 

i I1 
%(RI1 A e") = -y* e . 

8m (49) 

This is recognised as an Einstein-Cartan equation with a 'cosmological term' and 
indicates that the 77 = -1 geometry also arises as a double dual solution of the field 
equation 

S A"/Se = 0 

arising from an interior action 

The volume 4-form *1 seems to be simulating an effective 'pressure' as a source for the 
interior geometry. However, the action (12) is preferred to this one since the latter 
would predict zero torsion from 

S A"/S& = 0. 

Furthermore the 77 = +1 polarity solution does not satisfy (49). 
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The curvature 2-forms can be pulled back to the 2-dimensional domain r = 2m, 
t = constant and we find 

p * p = p * p = - 1  4 d N ~ d N  (51) 
where p* denotes the pull back. However, the orthonormal components are not 
continuous across the interface r = 2m that partitions the three-dimensional space-like 
hypersurface t =constant. In order to study the intrinsic nature of the interface we 
examine the second fundamental forms of the surfaces M ( 3 )  and M'2' whose tangent 
spaces are spanned by X1, X2, X 3  and X 2 ,  X3 respectively where Xo,  X1, X2,  X 3  form an 
orthonormal frame with respect to the generic static spherically symmetric metric 

g = - h i ( r )  dtOdt+h:(r)drOdr+h:(r)(dBOdB+sin2 8 d 4 O d 4 )  (52) 
i.e. g ( X i ,  X i )  = vij = diag(-1, 1, 1, 1). Thus 

i a  i a  l a  l a  xo=- -, XI =- -, xz=--,  x3=--- ho at hl  ar hZ 88 h2 sin 0 a4 ' (53) 

For the three-dimensional submanifold M(3) ,  the second fundamental form H(O) is the 
symmetric (2,O) tensor defined by (Kobayashi and Nomizu 1969) 

( V x Y ) ( e o )  = H"'(X, Y )  vx, YE T(M'3') (54) 

where V is the torsion-free connection on M calculated from g. In terms of the 
connection components r j k  defined by 

vx,xi = r ;xk i, j ,  k = 0, 1 , 2 , 3  ( 5 5 )  
3 

m , k = l  
H(O'= 1 r k k e m O e k  

where e ' (X,)  = Si.  For the two-dimensional submanifold M(') the second fundamental 
forms I?(') and 6") are defined by 

( V x y ) ( e o )  = I ? ( o ) ( ~ ,  Y )  (57) 

( V x Y ) ( e ' )  = I?(')(x, Y )  vx, YE T(M'2'). ( 5 8 )  

Thus 

m , k = l  

2 

m , k = l  
I?(''= 1 r L k e m O e k .  

The ri, components with respect to this orthonormal basis are calculated from 
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and we readily calculate 

Computing Z?') with the two metrics g' and g" we find that they agree at r = 2m. 
According to a statement in Misner and Sharp (1964), if the second fundamental forms 
of g' and g" associated with the three-dimensional space-like hypersurface agree on the 
interface then there exists a chart in which the components of g' and g" and their first 
derivatives are continuous at r = 2m. This would imply continuity of the Christoffel 
geodesics across the interface. 

4. Summary 

We have presented a classical model of a matter-free gravitational field that exists in 
two distinct phases. One of the phases is considered to be vacuum Einstein. We have 
attempted to motivate the description of the torsion phase by analogy with the physics 
of other gauge systems. For the exact spherically symmetric static solution discussed 
here, the interior torsion phase is fixed by its matching properties with an exterior 
Schwarzschild geometry. Although it is not a priori clear what physical conditions 
should determine the jump conditions across the interface between the two distinct 
gravitational phases in general, we should note that the complete solution found here 
meets the same requirements as those usually adopted for other gravitational junctions. 

One conclusion we can draw from this exercise is that it may be possible to prevent 
the formation of space-time singularities by a gravitational 'phase transition' involving 
a dynamical torsion phase. If a stability analysis confirms that the solution discussed 
here is not unphysical we would suggest this model as a mechanism for a 'cosmic censor'. 

Our solution is certainly not unique. However, we feel that further investigations 
should first attempt to understand the time-dependent approach to the geometries 
adopted in this paper before dwelling on uniqueness questions. A proper stability 
analysis must take into account the dynamics of the boundary and consequently one 
should not ignore either the action of the interface or the exact 4-form that has been cast 
onto the associated 3-chain. Finally it should be noted that matter couplings to the 
geometry in the presence of the torsion phase may be essentially distinct from those 
found in Einstein's theory. 

Appendix 

For those who are more familiar with the component formulation of gauge theories of 
gravitation we present here a component formulation of our model. 

We start from the orthonormal basis 1-forms e a  and linear connection l-forms U;.  

The indices a, 6, .  . . , are raised and lowered by the Minkowski metric T a b  = (-+++). 
The metric compatibility of the linear connection is ensured by 6.h = - W k .  The metric 
of the space-time is g = Tabes @ e b .  The contortion l-forms K ;  are defined by 
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where the structure equations 

d e "+r ;  A eb = 0 

T " = K ; A ~ ~  ('43) 

(A21 

determine uniquely the (Christoffel) connection l-forms r;. The torsion 2-form 

and the curvature 2-form 

It follows from above that 

(DrK):= (DK);-2K: A K;. (A71 

Furthermore, defining the (Christoffel) curvature 2-forms 

The total action of our model is 

y ( e ,  w,  r) = y I, Rab A * ( e a  A e h )  
G 

Ly 

{RP A *Rpb +(DrK)ab A * ( D , K j a b } + [  T.  +i I,, c3 

(-410) 

It is possible to re-express the second integral above solely in terms of e and w and their 
derivatives. In order to do this we first rewrite equation (A3) in component form as 

( A l l )  T a b , c  = - K a , b c  + K b , a c .  

We use this relation to solve for the contortion components in terms of the torsion 
components: 

2 K a , b c  = Tab,c  - T c a , b  Tbc ,a .  (A12) 

Substituting into (A7) and (A9) we rewrite these equations in the component language: 
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2 g ~ d , ~ b  = 2 R ~ d , ~ b  + 2 V  [ c T d l a , b  + 2 z , I c l T a b , l d ] - 2 V  [ ~ T d l b , ~  - T [ c l a , e T l d I e , b  
( w )  (w j i w )  

- T [ ~ l e , ' T l d ] b , ~  f T [ c / ' , e T a b , l d 1 f  T [ d / b , e T / I c ] f  T a e , [ c T d l e , b  f The, [ d T c ] e , a  

- T [ ~ l ~ , e T b l d ] , ~  - T e [ ~ / , ~ T / d ] ~ , b  - T a e , [ c T e b , l d ] *  (A 14) 
The symbol [ai . . . Ib] = a .  . . b - b .  . . a stands for antisymmetrisation. The covariant 

derivatives are defined through the corresponding form relations D, = e a  V a and 

Dr= e a  V 
( W )  

(ria' 
The relevant piece of the action may be computed from 

The conditions p = 0 in component language reads 
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